
vmo

.-'- ?

fK" --dp / - c_ f_._--

(NASA-CR-187c/15) PCLIPS ginJl Report

(Housfon Univ.)]7 p CSCL O9_

Uncles
_/ol 03322a3

PCLIPS FINAL REPORT

Patrick D. Krolak

Center for Productivity Enhancement

University of Lowell

December 1990

Cooperative Agreement NCC 9-16

Research Activity AI. 10

NASA Johnson Space Center

Mission Support Directorate
i

Mission Planning and Analysis Division

Research Institute for Computing and Information Systems

University of Houston Clear Lake

I1_1 11711

T.E.C.H.W.I.C.A .t R.E.P.O.R. T

\

_=-

J

i

m

=Ii

iml

=_ =

=-M

The

RICIS

Concept

The University of Houston-Clear Lake established the Research Institute for

Computing and Information systems in 1986 to encourage NASA Johnson Spa_ _
Center and local industry to actively support research in the computing and ;_ |
information sciences. As part of this endeavor, UH-Clear Lake proposed a

partnership with JSC to jointly define and manage an integrated program of research
in advanced data processing technology n_ed (or JSC's 111a_ons_ including ==

administrative, engineering and science responsibilities. JSC agreed and entered into - _-

a three-year cooperative agreement with UH-Clear Lake beginning m May, 1986, to

jointly plan and execute such research through RICIS. Additionally, under
Cooperative Agreement NCC 9-i 6, computing and educational facilities are shared
by the two institutions _o conduct the research. . !

The_mission of P.iCIS is to=condu&, Coordinate and disseminate research On :_

computing and information systems among researchers, sponsors and users from
UH-Clear LaKe, NASA/JSC, and other research organizations. Within UH-Clear - _

Lake, the mission is being implemented through interdisciplinary involvement of '_ : _
faculty and students from each of the four schools: Business, Education, Human _J,_

Sciences and Humanities, and Natural and Applied Sciences.

Other research organizations are involved via the "gateway" concept. UH-Clear
Lake establishes relationships with other universities and research organlzation_,- =_ |

having common research interests, to provide addhloiaal sources of expertise to
conduct needed research.

A major role of RICIS is to find the best match of sponsors, researchers and =--_
research objectives to advance knowledge in the computing and information -±= _-

sciences. Working jointly with NASA/JSC, RICIS advises on research needs, :_

recommends principals for conducting the research, provides technical and

administrative support to coordinate the research, and integrates technical results

into the cooperative goals of UH-C!ear Lake and NASA/JSC.--- :_= : ;:: : _ ::

v

PCLIPS FINAL REPORT

- .=

r
_ w

u

u

V

w

W

mnl

Preface

v

This research was conducted under the auspices of the Research Institute for

Computing and Information Systems by Dr. Patrick D. Krolak, Director of the

Center for Productivity Enhancement, the University of Lowell, Lowell,

Massachusetts. Dr. Terry Feagin served as RICIS research representative.

Funding has been provided by Mission Planning and Analysis Division,

NASA/JSC through Cooperative Agreement NCC 9-16 between NASA Johnson

Space Center and the University of Houston-Clear Lake. The NASA technical

monitor for this activity was Timothy Cleghorn, of the Mission Planning and Analysis

Division, Mission Support Directorate, NASA/JSC.

The views and conclusions contained in this report are those of the author and

should not be interpreted as representative of the official policies, either express or

implied, of NASA or the United States Government.

v

r

v

H

V

m

qlr'*

. °,

PCLIPS FINAL REPORT

Center for Productivity Enhancement

University of Lowell

__-__-_

-L

Subcontract # 17

=--

V

!11

lift

ilm

Lx_

m_

W

q_

iI

_m

lw,

ii

v

m

Ili

m

11V

II

m

L_

Introduction:

Expert system technology was developed to take over the role of decision making

in areas where human experts are unavailable. One of the problems with a large expert system

is that it requires a large, very high speed, expensive processor to attain a reasonable response

time. This becomes even more critical in a real-time environment, such as a continous process

plant, where slow reaction to a situation can have serious, even deadly consequences. It also

creates a situation where a single point failure could have disastrous results. In a lot of cases,

one large expert system can be broken down into multiple smaller experts, each responsible for

a small piece of the problem. These, in turn, can be distributed over a network of smaller,

cheaper processors. Not only can a significant savings be realized, but redundancy can be built

into this system to minimize downtime.

CLIPS is an expert system shell developed by NASA, created specifically to allow

rapid implementation of an expert system. Unlike most modern expert systems shells, CLIPS is

written in C, not LISP, and thus needs a very small amount of memory to run. Parallel CLIPS

(PCLIPS) is an extension to CLIPS. It is intended to be used in situations where a group of

expert systems are expected to run simultaneously and occasionally communicate with each

other on an integrated network. In keeping with the original concepts of CLIPS, PCLIPS also

minimizes the amount of memory needed to run, thereby maintaining the idea of using micro-

processors for handling PCLIPS experts.

LJ

m

Another goal of the PCLIPS development was to minimize the learning curve

which always exists for a programmer learning distributed/parallel programming for the first

time. Under most distributed programming environments, the programmer must become famil-

iar with operating system specific details, such as process creation, inter-process communica-

tion, and network protocols. PCLIPS provides an operating system independent programming

environment. It frees the programmer from having to learn about operating system specific

functi0nslJand-ai!0ws the programmer t0-concentrate On the expert system Control.

PCLIPS allows cooPerating , expert systems that are solving different problems to

exchange data when appropriate. For example, if we have an automated factory and many co-

operating expert systems, we want expert systems that control robots, do scheduling, planning,

monitoring and prognosis, implement security and inventory, and perform many other roles in a

factory environment to be able to talk to each other. They do not need to be completely de-

pendent upon each other in the sense of fine-grained parallelism. In other words, we did not

want an:expert system which d=epends_upon_ another-expert systernfor its input, and will block

and wait until it receives that input. We have very coarse-grained parallelism with this shell

wh_ich allows cooperating systems to receive data knowledge that is pertinent to the functions

they are performing, Wedid not wa/it t0 i-ak-e--ah expert System, divide it up into four parts, and

run it on four processors, although it is possible to do this in certain cases.

PCLIPS is a coarse-_ained data distribution system. Its main goal is to rake infor-

m

m

marion in one knowledge base and distribute it to other knowledge bases so that all the execut-

ing expert systems are able to use that knowledge to solve their disparate problems. For exam-

ple, in an automated manufacturing environment, there is normally a scheduling package re-

sponsible for handing out assignments to the various manufacturing entities. This scheduling

package will occasionally need to get information regarding work orders, which would come

from a forecast planning system, or from an order entry system. It will also need to get infor-

mation regarding resource utilization in order to optimize the resources. Each manufacturing

workcell can also be controlled by an expert system, to maximize throughput, and to handle er-

rors that occur without requiring operator intervention.

Implementation:

In order to minimize the amount of training required to bring a CLIPS programmer

up to speed with PCLIPS, the calling techniques of CLIPS were maintained. In a CLIPS pro-

gram, when the expert system wants to place a new fact onto its fact base, it uses the function

assert to perform that task, In PCLIPS, when the expert system wants to place a new fact onto

the fact base of all the other expert systems on the network, it uses the function rassert, which

provides the broadcast mechanism that sends the fact to every other expert system on the net-

work. The expert system programmer does not have to worry about network protocols, operat-

ing system calls, or any other system specific programming.

Up to this point, we support four different protocols, and are researching several others.

The first protocol which PCLIPS has been implemented under is the Network Com-

puting System (NCS). NCS is the Open Software Foundation (OSF) Remote Procedure Call

(RPC) standard which was developed by Apollo (now HP/Apollo). NCS is a transport-

independant, object oriented RPC protocol which allows the programmer to create and manipu-

late objects in remote server-modules without having to manipulate low-level communications.

PCLIPS also takes advantage of NCS's "location brokering", which is achieved through the use

of NCS's Global Location Broker (GLB). Using this resource PCLIPS need never know what

machines other PCLIPS' are located on, as NCS maintains dynamic locationdatabases. Cur-

rently, PCLIPS UseSNCS to transmit facts over TCP/IP or DDS networks, but can easily be

modified to support many other network models. This implementation has become the stan-

dard; by which the funct!0nality Of any new ports will be copied. When an expert starts up, it

firsts initializes by registering with

The secondprotocol thai weimplemented was vMs mail_xeS. This_{mplementa --

tion allows US to run multiple PCLIPS processes onaVAX running VMS, which was heeded

for a project that had been developed under VMS. Under this implementation, when a user

starts a PCLIPS process, the first thing the process does is check to see if a PCLIPS server is

running on the node. If a server is not running, one is started up. Then the process registers

with the server. First, the process creates a link to the server's mailbox. It then sends a mail

message to the server that states the logical name for the registering process. The server uses

the logical name to create a link back to the registering process's mailbox. When another

I

_yt

R

qlF _

m

w

tlF

2 PCLIPS process starts up, it also registers with the server. Then, whenever a fact is

RASSERTED by one process, it goes to the server, which forwards the message to all the other

registered PCLIPS processes. We have since received a copy of NCS for VMS, and are in the

progress of porting PCLIPS over.

The third protocol we developed used the message ports on the Commodore Amiga.

This approach allowed us to develop PCLIPS applications on a very inexpensive microproces-

sor, which was used for prototyping user interfaces. This implementation is similar to the VMS

port, since the message ports perform tasks similar to VMS mailboxes. A server must be

started on tile system first, then any e_pert that starts up after it registers with the server.

_.====

L--

m

The final protocol that we have ported PCLIPS to is the Intel Personal SuperCom-

puter (IPSC) communication primitives on the Intel Hypercube. The Hypercube was designed

by combining multiple low-cost microprocessors into a high-speed parallel processing machine.

Since it has a fairly low external bandwidth, it is ideal for situations in which a highly CPU-

intensive problem can be divided into smaller problems that can be solved in parallel. The Hy-

percube architecture is designed so that the message passing distance between the two furthest

processors in the machine is minimized. Each processor in the cube runs an executive, which

allows it to not only pass messages between processors, but to run multiple programs on each

processor. Under PCLIPS, whenever one process remotely asserts a fact, it sends it to all its

adjacent processors. They copy it and pass it along to their adjacent _rocessors until all the

processors have received the message.

Some of the other protocols that we are researching are:

GOSIP - Government OSI Protocol

t_DDI - Fiber Distributed Data Protocol

TCP/IP- Tranmission Control Protocol/Internet Protocol

SNMP - Small Network Management Protocol

Information contained in a PCLIPS message is as follows; the fact is prepended

with the processor name and process number or PID (process identifier) that the fact came

from. This information Will be Useful if network security becomes an issue. There will also be

two times stamps added to the PCLIPS message. One time stamp will be added when the ex-

pert system rasserts the fact. The second time stamp will be added when the fact is actually

sent from the machine. The need for the two sep_te timesexists because of the potential de

lay between the rasserting of the fact, and the actual transmission of the fact. The following

scenario parameters define an example of how this delay could occur.

1) The network protocol that is being used requires handshaking between the sender and re-

ceiver everytime a message is sent.

2) There are a large number Of expert systems on the network.

Under these conditions, when an expert system rasserts a fact, it must send out a

message to one of the expert systems on the network, and wait for the corresponding handshake

message that is returned before it can transmit the fact to any other expert system. Therefore, it

could take several seconds, or longer for the transmitting expert system to send its fact to all the

other expert systems on the network. If any form of information aging or network management

is implemented, the time delay must be noted.

Finally, a zone identifier is added, which enables the implementation of multiple

zones or groupings of expert systems. This information is not under the control of the user, it is

inside the CLIPS kernel and cannot be modified. This allows us to write another very impor-

tant part of a network of expert systems cooperating with each other, which is a security expert

system that keeps track of everything and makes sure that no expert system is doing something

that it should not be doing. Another use is that it allows us to do is to write a diagnositic expert

system. The expert system is related to the security expert system, and its purpose is not to find

expert systems creating bad knowledge or changing correct knowledge, but to diagnose expert

systems that are failing in some way. It is likely that the security and diagnostic systems would

be one and the same on smaller networks. Another purpose of broadcasting is that voting ex-

pert systems can be easily created, where three identical expert systems are running simultane-

ously, and a fourth expert system tabulates the voting results.

Applications:

One area of research that PCLIPS will be useful in is the area of network system

management. The state of the art in network system management is exemplified by Digital

Equipment Corporation's SysMan Utility on VMS. One system is dedicated to this problem

electronically and uses a network it is attached to to go out and diagnose all of its systems. This

is a stopgap measure at best because while it works fine for smaller networks (50-100 systems),

it cannot handle a 500-1,000 system network unless there is a very large processor dedicated to

running systems diagnostics.

m

Ml

i

w

w

m

In most scenarios that occur today, the system manager acts as a reactionary prob-

lem solver, as opposed to a proactive problem solver. To correct this situation, we are develop-

ing a system that uses PCLIPS processes for monitoring and solving network problems. Since

PCLIPS is capable of talking to all the other expert systems on the network. It is best described

as a "daemon" in Unix terminology. With roughly one minute cycle time, it activates and exec-

tues a series of subroutines in C, Fortran, or any other language, requesting data or facts about a

certain aspect of the system. For example, the expert system might activate and ask, "Have

there been any disk errors?" The answer is "no", so it continues. It then asks, "Have there been

any tape drive problems?", and the tape drive subroutine reports "No". Then, it continues,

"Have there been any terminal errors, TGY line errors?", and the system returns and says,

"Yes". Then PCLIPS asks, "Which one?" The system returns, "TGY-5". What PCLIPS does

next depends on the complexity of the expert system one has built. The current implementation

simply reports the problem.

L

u

How is the problem reported? One system runs a control expert system as well as a m

L

m

r

z

m

m

monitor expert system. The control expert system collects data from the entire network and

stores it. This differs from th-e State of the art in that each system monitors itself. Also, because

we are using C, a system manager can define his own error detection functions and errors on his

system. PCLIPS then sends a message to the control expert system saying a TGY line has

failed. The control expert system stores that information until the system manager retrieves it

and analyzes the data. PCLIPS then continues because it cannot do anything about the broken

TGY line: It asks, "Has the password file changes?" The system looks at a known copy of the

password file, which is guaranteed to be correct by some secure method, and the system reports,

"Yes, the password has been changed." Depending on the level of the expert system, we might

simply report a security error at this point, or we might look at the user who authorized the

change and potentially check that information against another data structure somewhere on the

network that defines what users were in fact authorized by the system manager today. Since it

is not always possible to guarantee security at one point, levels of security or multiple checks

and balances exist to guarantee that one's security is correct. In this case, the fact that a new

account was put on the system must appear, or an alarm to the system manager is made.

A final example is a pure software error. How can PCLIPS deal with this? With a

large network, there will often be machines connected to other networks. Often the gateways

fail, or are no longer recognized by the host system. Usually this causes losses of electronic

mail, along with other problems. When this situation occurs, the first thing to do is to check if

the gateway is working. Assuming that it is, very often the tables of available gateways and

their current states have become corrupt. Depending upon the operating system, especially with

most Unix operating systems, the gateway tables become corrupt quite easily. This is espe-

cially true if a user runs the routing deamon to determine the available gateways and their

routes from Berkley. What a system manager can do with our current system is define a tem-

plate of what the available gateways should look like, and compare that template against the

actual existing gateways. If they do not match, PCLIPS detects the error when it queries

whether the routing tables are correct or not. The C subroutine says, "No", and CLIPS reports

the error to the control expert system. Then, it tells the control expert system, "I'm attempting

the fix the problem", and then calls the C subroutine to fix the problem. After it calls the C

subroutine, it asks once again, "Are the routing tables correct?" If the answer is "Yes", the ex-

pert system reports that it successfully fixed the problem. If the answer is "No", the expert sys-

tem reports that it failed to correct the problem. Thus, in the case of a software error, we have

allowed our'expert system to use its knowledge base of rules to find and diagnose a problem

and solve it without human intervention.

The first aspect of this system was that it had the capability of diagnosing hardware

by asking the kernel on that system if there were any hardware problems. We have seen that it

can also diagnose operating system software, The final possibility is to put a run-time parallel

CLIPS into an application that must run constantly. When that application is experiencing prob-

lems, the parallel CLIPS can• assert the information that it is having problems to the other paral-
lel CLIPS in the network. The locations that should receive that information are the monitor

expert system on the local node, and expert systems that depend on the application that is hav-

ing problems, and the control expert system.

W

Another area in which PCLIPS could provide valuable assistance is in the area of

the Space Station environmentai-controil Since ihe Space _;tation is targeted to consist of a

number of different, complex systems, expert system technology would be utilized to monitor

and maintain the individual systems. For instance, there would be a power grid expert that

would keep track of power consumption, battery capacity, and solar panel input, among others.

There would be an environmental expert that would keep track of air quality, to ensure that

safety of the occupants. There would be experts in charge of monitoring experiments, and

many others. In order to provide the astronauts with a safe environment, many different factors

must be continously monitored and controlled. For example, one of the most important is the

amount of oxygen in the atmosphere of the Space Station. Since the humans will be conti-

nously using oxygen, and generating carbon dioxide, the oxygen level must be monitored. A

filtering and retrieval system will provide the normal equilibrium. But, in the event that an un-

normally low level of oxygen were reached, due to a clogged filter, the air monitoring expert

system would decide that an emergency oxygen pump should resupply the air. However, since

the pump requires electricity to run, the power grid expert would have to be notified that a cer-

tain number of watts would be required to run the pump. Since the power grid expert has been

monitoring consumption, it will be able to evaluate whether or not the power system can handle

the new load. If it determines that it cannot, without exceeding certain thresholds, it would de-

termine that it would have to cut back on consumption in other areas. One area it might cut

back on could be an experiment area. The power grid expert would evaluate the consumption

rates of the different experiments, looking to cut back the amount it needs to stay below its us-

age threshold. It would then double check with the experiment expert to verify that the experi-

ment could be shutdown termporarily without any lasting side effects. Upon receiving verifica-

tion of this, it would cut the power to the experiment in question, and ene_ize the oxygen

pump. Since each of these experts were running on their own microprocessors, they would be

able to quickly come up with the necessary solutions, and combine to solve the emergency situ-
ation in a matter of seconds.

l

m

qlw

Ill

u

w

m
J

m

_.__.

Z
U

m

cOnClusions:

The preliminary goals of PCLIPS has been achieved. The first goal was to maintain

the ease of programming an expert system. Since the Original CLIPS provided that capability,

we wanted that capability to continue when developing parallel expert systems. Secondly, we

wanted to isolate the expert system programmer from the complexities of network provam-

ming. This was accomplished by developing a standard library of functions that were callable

form PCLIPS. These functions will exist under any implementation of PCLIPS, regardless of

the networking or inter-process communication protocol. This will also make PCLIPS applica-

tions highly portable. An application that is written using the TCP/IP implementation of

PCLIPS will also run, without any changes to the CLIPS code, on the NCS implementation.

With the advent of the low cost, high speed microprocessor, and high speed com-

puter networks, it is now possible to develop a highly sophisticated set of expert systems using

PCLIPS that can perform better than large expert systems running on a large, expensive main-
frame.

m

m

m

J

u

6

U

im

lu

m

N

V

L_

Integrating PCLIPS into ULowell's Lincoln Logs
Factory of the Future

The Center for Productivity Enhancement

University of Lowell

by
Brenda J. McGee

Mark D. Miller

Dr. Patrick Krolak

Stanley J. Barr

,,==,

i

m

..-,.

J

ABSTRACT

We are attempting to show how independent but cooperating expert systems, executing within a parallel produc-

tion system (PCLIPS), can operate and control a completely automated, fault tolerant prototype of a factory of the

future (The Lincoln Logs Factory of the Future). Thc factory consists of a CAD system for designing the Lincoln

Log Houses, two workcells, and a materials handling system. A workcell consists of two robots, parts feeders, and

a frame mounted vision system.

1. INTRODUCTION

The University of Lowell's Factory of the Future, consists of an intelligent Computer Aided

Design (CAD) system, a _aphical simulator, and a physical factory. Designed to be autono-

mous; needing minimal assistance from an operator, the factory is a state of the art prototype

for automated manufacturing. This factory consists of two physical workcell_, which are con-

nected by a computer controlled material handling system. Each workcell has two robots, verti-

cally mounted cameras which are controlled by a vision system, and parts feeders which have

sensors to monitor workcell inventory. The CAD system provides the user interface for design-

ing the houses. The design is sent to a CLIPS scheduling expert system. Thereafter other CLIPS

expert systems, aided by the vision system, operate and synchronize the robots and other hard-

ware to manufacture the design. For efficient executionbf-these parallel expert systems there is

a need for a fast, reliable, user-transparent, hardware and operating system independent net-

working production system. PCLIPS (parallel CLIPS)[1], developed at the Center for Produc-

tivity Enhancement, has these qualities allowing concurrent independent CLIPS expert systems

to exchange messages in the form of facts. The crucial feature of PCLIPS is a command called

rassert or remote assert. Rassert allows a CLIPS process to assert facts into the fact databases

of every other CLIPS process, thus communicating cooperatively with one another, ultimately

resulting in an intelligent manufacturing workcell environment.

!

W

g

2. PCLIPS and Lincoln Logs: The Concept

Interprocess communication for Lincoln Logs was originally accomplished through a mailbox

system, implemented on VMS 1. Each process in the factory created its own mailbox, and a

pointer to the mailbox of any other process that it needed to talk to. This reserved space in

memory where messages were left and picked up, using QIOs. This method had two limita-

tions. The first was that it was system dependent. It would only work on VAXEN 2. The other

limitation was the incompatibility between our inter,process messages and CLIPS, which we

were implementing at the process level. PCLIPS was chosen, therefore, to replace this mailbox

system.

PCLIPS has several advantages. The network operations and protocol requirements for the net-

work are transparent to the user, thus eliminating that concern from the expert system devel-

oper. It also works on heterogeneous computer systems, enabling the expert system developer

to design platform independent software. Finally, the inter-process messages are in the native

format of CLIPS (facts), thus eliminating the earlier need for translating inter-process messages

ino facts.

The first issue that we had to resolve was a standard format for interprocess messages since the

use of the rassert (remote assert) command globally broadcasts each fact, or inter'process mes-

sage, to every other process running PCLIPS. We used the following format:

(IPM receiver sender $?)

The atom receiver is the name of the process who the message is intended for. This is either the

specific name of the process (ex. VISION), or the string ALL. An IPM fact with ALL in the

receiver position is a message intended for all processes running.

The atom sender is the name of the process which broadcasted the fact. When an inter-process

message is broadcast, each process pick s up the fact and fires a rule in order to test whether or
not that fact is meant for that process. Code from the Vision process will serve as an example,

as the code in each process is simillar.

(defrule interprocess_message

?gnim <- (get_next_int_message)
?IPM <- (IPM VISIONiALL ?sender ?rml ?rm2 ?rm3 ?rm4 ?rm5 ?rm6 ?rm7)

=>

(retract ?IPM ?gnim)

(assert (rmessage ?sender ?rm 1 ?rm2 ?rm3 ?rm4 ?rm5 ?rm6 ?rm7))

r
m

u

m

=

w

w

I

m

w

w

L
m

w

l VMS is a trademark of Digital Equipment Corporation

2VAXEN is a trademark of Digital Equipment Corporation

m
W

llml

, =:=

w

F__

r_

N

r

_=-

w

If the fact is not meant for that particular process, a rule is fired that retracts that fact from the
list.

(defrule IpM_not_for_this_process
?IPM <- (IPM -VISION&-ALL ?sender $?)

=2>

(retract ?IPM)

)

Since all the processes are event triggered, there are times when a single process will complete
all its current tasks, and will have to wait until a new event occurs. In order to avoid a busy

wait, we took advantage of the salience option in CLIPS and created a rule that suspends a

process until a new event occurs. Since we used the lowest salience possible, this rule will only

fire when there is nothing else on the agenda, thus eliminating the possibility of the process be-

ing suspended in the middle of a task. When all the rules have fired, whether or not the IPM

was for that process, the process goes back into a wait state until the next global fact arrives.

(deffule wait

(declare (salience - 10000))

?w <- (wait for IPM)

=>

(retract ?w)

(call (suspend))

)

CLIPS has also been integrated into the factory of the future in the decision making process.

3.1 Preventer (Collision Prevention)

At this time, our collision prevention algorithm allows us to use two robots in a workspace.

The Preventer process performs collision prevention by calculating where each robot arm, grip-

per and part will be located during placement. A robot requests access to the workspace,

through an rasserted fact. The Preventer then calculates the path the robot will follow to get to

it's destination, and determines the potential for a collision or obstruction between any of the

following: The two arms, the parts in the robot grippers, and the vision inspection system. The

vision system needs a clear view of the part it is inspecting. Otherwise, it may report invalid

information.

If the Preventer determines that a collision is possible, it will ,enforce mutual exclusion to the

workspace by delaying rasserting the access granted fact to the Robot Process until the situ-

ation has changed, and the robot has a clear path to its destination.

3.2 Vision (Vision Inspection)

Vision Inspection, done with an overhead camera, occurs after a robot has successfully placed a

piece on the work pallet. The Vision system waits for an rassertedfact from the Robot process.

The fact contains information about the part that needs inspection, namely the part type, it's lo-

cation, and orientation on the pallet. If the Vision System does not approve of the part's posi-

tion, it alerts the robot with a fact that includes the calculated offset of the part. When alerted,

the robot will re-enter the workspace and attempt to correct the problem. Once the Vision sys-
tem approves a part, the robot moves on to its next tast.

3.3 Robot (Robotic Control)

We have created a Robot Planner using CLIPS. When the planner, or process starts up, it

rasserts a task request to the workcell scheduler. When the scheduler returns the task message,

the planner breaks the task down into a series of operations. The example we will follow is a
Place Part task.

First, the planner must determine the part's location (in the parts feeder, on the jig, on the pallet,

etc.). Based upon this information, it then determines its approach path to the object. Once it

has the part in its grasp, and the gripper is clear of the part holder, a path to the workspace is

calculated. At this point, the robot process must request access to the workspace, which it does

by rasserting the request to the Preventer process. Once the robot has been given clearance, it

calculates a path to the release point, follows the path, and releases the part. It then moves clear

of the workspace, and rasserts a request for a vision inspection. If the vision system reports the

part placement to be outside the tolerance limits, the robot will re-enter the workspace and at-

tempt to correct the error. When the vision system approves the part, the robot sends a task

completion fact to the scheduler. It then checks its agenda for any other work. If none exists, it

sends another task request message to the scheduler.

The flow of the planner is controlled by two facts, state and action. When the planner enters a

particular state, there are several actions which must be performed sequentially to assure a cor-

rect execution. There are several examples of built-in error handling. Whenever an error occurs,

the planner will immediately move to the error handler. We force this to occur through the use

of a high salience for the error handler initiator.

(defrule first-grasp-error-handler

(declare (salience 100))

(error occurred)

(state get-part)

?action <- (action grasp-part first-attempt)
=>

(retract ?action)

(assert (action grasp-part second-attempt))

w

=

z==..
w

m
w

w

m

J

U

hi,

m

¢=

=__

w

r .

h _

u

3.4 Sensors (Sensor Fusion)

The Sensor process allows the operator to be informed when there is a change of state in the

parts=feeder; as well as allowing the operator to shutdown a particular feeder. This control is

accomplished by monitoring infra-red sensors near the base of each feeder. The Sensor process

continuously monitors these sensors, and rasserts facts to the scheduler if a state change occurs.

The Sensor process also has the ability to introduce errors into the system in order to test the

system's ability to cope with malfunctions.

3.5 Scheduler (Task Scheduler)

The Scheduler Expert System is a dynamic task optimizer. The scheduler reads in a natural lan-

guage description of the house. After parsing the description, the scheduler dynamically as-

signs tasks to the requesting Robot Processes. Due to the dynamic nature of the scheduler, it can

change the schedule as workcell conditions Change, enabling it to track workcell inventor),,

throughput, and resources. The Scheduler's main goal is to maximize the workcell yield. It

achieves this goal by optimizing workcell events to allow parallel execution of robot operations.
When mutual exclusion is enforced, one of the robots must wait for the other robot to exit the

work space, cutting down on throughput.

3.6 IO-Process (lnterprocess IO-controller)

The IO-Process is the parent of all workcell processes. It allows the operator to configure the

workcell for the resources available (i.e. material handling system, vision, robots, simulator,

etc.) It then starts up the workcell process and remotely asserts a startup fact in each. After-

wards, it monitors all the workcell processes and notifies each workcell process of changing re-

sources. When the job is finished, the IO-Process terminates all workcell processes by rassert-

ing a shutdown message.

3.7 Simulator (Workcell Simulator)

The Workcell Simulator provides a mechanism for testing control software without the need for

workceif _b.rdware. The simuiator graphicaily'm'{mics the actions of both°r0bots on a color

workstation. While the Simulator is running, the Robot Processes simply redirect their output to

the Simulator instead of the physical robots. The Simulator provides handshaking capabilities

similar to the physical robots, which allows the operator to simulate a robot error, for testing the

reliability of the workcell software.

3.8 Material Handling (Automated Maierials Handling System)

The system loads and unloads work pallets into each workcell. It also has the ability to trans-

port pallets from one workcell to another for completion of jobs, if the need ariseS. Error detect-

ing and handling capabilities have been built into the expert system which controls the MHS. If

there is an error, it can determine exactly what the problem is.

3.9 Pod (Pod Scheduler)

The Pod Scheduler is the middle man between the factory scheduler and the individual workcell

processes. It not only gives assignments to individual workcells, but also controls the overall

execution of workcells that are performing similar tasks. When, the Pod scheduler receives a

build requestfrom the FactoryScheduler,it determineswhich workcell shouldtakeon there-
sponsibilityof carryingout the request. If the chosenworkcell is unableto carry out this re-
questfor somereason,it will thenchooseanotherworkcell to takeover thejob. There is alsoa
materialshandlingsystemat thePod level that is underthecontrol of thePod. This setupen-
ablesmovementof thepalletsamong theworkcellsat thePodLevel.

4. Future Directions

The Lincoln Logs Factory of the Future will continue implementingimproved versionsof
PCLIPSasthey aredeveloped.Onelimitation of thecurrent versionof PCLIPSis its lack of
routing capabilities for remotely assertedfacts. Every rasseried fact is broadcasted to every

other process running PCLIPS. As our factory grows,:and:subSequently the number of proc-

esses running PCLIPS, routing mechani_sm will have to be implemente d to avoid network and

CPU saturation. We will also continue the development of our process level expert systems,

with a focus on designing and implementing an advisory framework to provide operator, advi-

sor and supervisor assistance at every level of the factory.

5. REFERENCES

[1] Miller, Ross, "PCLIPS: A Distributed Expert System Environment," First CLIPS Users

Group Conference, Houston, Texas, August 1990. :

[21 Alpha II Reference Guide. MICROBOT Inc. Mountain View, CA. January 1984.

[31 CLIPS Reference Manual. Mission Support Directorate, NASA/Johnson Space Center.

Houston, Texas. Version 4.2, April 1988.

[41 RAIL Standard Vision Documentation Package. (AI Part #510-500610). AUTOMATIX

Inc., Billerica, MA. March 1987

[5] Kosta, C.P., Wilkens, L., and Miller, M., "A Three-Dimensional C.A.D. system". Center for

Pro_d_ucti¥ity Enhancement_: University of L0wel!. __Working Paper #FOF-_87-101. Lowe!!, MA.

February 1988.

[6] Miller, M., "Multiple Robot Scheduling". Center for Productivity Enhancement, University

of Lowell. Working Paper #I_0F-87'103. Lowell, _. November 1987.

[7] Miller, M., Kosta, C. and Krolak, Dr. P., "Computer Assisted Robotic Assembly" 3rd Inter-

national Conference on CAD/CAM, Robotics, & Factories of the Future.

[8] Dean, Thomas L., "Intractabilito _ and Time-Dep_endent Pl_arLning" 'Re_asonin_about Actions
& Plans, Pr._¢edings of the 1986 Workshoo', Morgan Kaufmann, Los Altos, California.

[9] Dougherty, Edward R., Giardina, Charles R., 'Mathematical Methods for Artificial Intelli-

gence and Autonomous Systems' Prentice Hall, Englewood Cliffs, New Jersey. 1988.

= =m

m

w

Iit

J

u

W

w

mw

m

w

m

m

g

lid

w

W

Iil

A Neural Network Simulation Package in CLIPS

Himanshu Bhatnagar, Patrick D. Krolak, Brenda J. McGee, John Coleman.

Center for Productivity Enhancement, University of Lowell, Lowell, Ma. 01853

t--g

m

w

-z"

qgg_r

w

g3

ma

ABSTRACT

The intrinsic similarity between the firing of a rule and the firing of a neuron has been captured, in this research, to

provide a neural network development system within an existing production system (CLIPS). A very important
by-product of this research has been the emergence of an integrated technique of using rule based systems in con-
junction with the neural networks to solve complex problems. The system provides a tool kit for an integrated use
of the two techniques and is also extendible to accommodate other AI techniques like the semantic networks, con-
nectionist networks, and even the petri nets. TfiiS ihfe_g/_afed_tec-'hniquecan be very useful in solving complex AI

problems.

1. INTRODUCTION

Direct hardware implementation of Neural Networks is not always easy and hence there is a

need for simulating them through computer software. Early examples of software simulation

models can be found in [1] and [2]' These and the other Simulation models primarily simulate "

the neural states, neural architectures and connection strengths, and implement the tools to ma-

nipulate them. Several learning techniques (rules) have been proposed in the Neural Network

literature, one of them being the generalized delta rule (or Back Propagation)[3]. Our first level

goal is to provide a more efficient package, in CLIPS, for simulating neural networks employ-

ing back propagation, together with expert systems.

CLIPS is an expert system shell developed by NASA [4], which provides a LISP like

interface and allows both forward and backward chaining. The production rules, under forward

chaining, have facts on the lhs and action Commands on therhs. When facts, in the facts data-

base, match the lhs of any rule that rule fires, possibly causing assertion of more facts and

hence firing of other rules. In a binary neural network, a neuron fires when its activation has

exceeded its threshold value. There ts an inherent slmalanty m the ay rules f'tre in an expert

system and the way neurons fire in a Neural Network, suggesting the modeling of one in terms

of the other, and hence CLIPS can prove to be a very effective simulation tool for Neural Net-

work modeling. We, at the Center for Productivity Enhancement, University of Lowell, have

developed a shell called Neural CLIPS, or N-CLIPS which allows Neural Network Simulations

to be built, tested and implemented along with regular expert systems. N-CLIPS provides a

common environment for development, implementation and operation of two competing and

radically different artificial intelligence techniques • the C Language Integrated Production Sys-

tem (CLIPS) for writing expert systems anda Neural Network system. These systems can either

operate independently to solve different classes of artificial intelligence problems or can co-

operate to help solve much bigger AI problems [9]. In [6] Rabelo has shown the usefulness of

combining the neural networks and the expert systems. Knowledge representation, acquisition

and manipulation, decision making and decision support are the major characteristics of these

techniques and hence when they are used together they can share knowledge and can share the

decision making process itself.

To furtheremphasize-theimportanceof suchacommonplatformweareusingit to model
a traffic control systemfor mobilerobotsoperatingtheMaterialHandlingSystemof a Flexible
ManufacturingSystembasedfactory [7]. The (simulated)mobilerobotshaveon-boardneural
networkswhich work togetherwith expert systemmodulesto guide themthroughthefactory
floor without collisionsandwith minimumdelays.SinceCLIPSprovidesanexcellentinterface
with C, theseexpertsystemrulescan interactwith otherprocessesandalso interactwith dif-
ferent typesof peripheralhardware[5].

The next sectionprovidesa brief descriptionof the termsrelevantto neuralnetworks,
followed by a surveyof the featurescommonto currently availablesimulationpackages.The
needfor integratingAI techniquesis discussednext followed by a descriptionof N-CLIPS.The
last section gives a detailed explanation of the system developed.

m

J

2. ARTIFICIAL NEURAL NETWORKS

2.1 Definitions

For our purposes a neural network is a densely connected, possibly layered, network of simple

processing units (neurons). The connections, known as synapses, are weighted links between

two such units where the weight of a link is modifiable, and determines what fraction of the

signal, between the two units, is actually passed. A negative weight usually signifies an inhibi-

tory link(synapse) which causes an inhibitory effect on the f'wing of a post-synaptic neuron. A

positive weight usually signifies a excitatory link which excites the neuron to which it is con-

nected.

Neurons, in the network may be classified into three types depending on the roles they play.

They are either input neurons (input layer), output neurons (output layer) or hidden neuron

(hidden layer) depending on whether they accept input from outside world, provide an output to

the outside world or receive input from units within the system and generate output for the units

within the system. Processing within a neuron may be divided into three stages : a) determina-

tion of net input to the neuron ; b) determination of neural state (an activation function associ-

ated with a neuron determines the state); and c) determination of the neural output (an output

function determines the final output value).

2.2 Learning

The two major learning paradigms available currently are: generalized delta rule (GDR) or back

propagation [3] and its variations for both feed forward and recurrent networks[16], and heb-

bian learning, with its sophisticated variants (by which we mean to include methods employed

in Bi-directional Associative memories and other associative memory models) [10] [17] [18] [19]

[20]. :-

2.3 Generalized Delta Rule

In the initial phase of our work we have focused on the GDR as applied to feed forward net-

works. In this approach a set of patterns is repeatedly presented at the input layer of a multi-

layered network. The output pattern generated is compared with a target pattern. The difference

is propagated back and is reflected as a change in the weights of the links, all the while mini-

mizing a global energy function (mean squared error function). The difference or the delta is

w

2

==

w

2Z

lira

w

m

J

j

used to modify the weights of links between neurons. This process is repeated till the actual pat-

tern is within a close range of the target pattern, for a particular input pattern. This is done for

each input pattern.

3. EXISTING SIMULATION I_ACKAGES

A brief survey of most of the commercial neural network simulation and development packages

reveals the following characteristics '

* A strong user-interface • Pop-up menus within a windowing environment, a file system and

interfac_e with major database systems for I/O.

* Types of Learning Paradigms supported • All major learning paradigms along with their vari-

ations.

* Capability for Customizing and designing user-specified Neural Nets • Ranges from just set-

ting up of network parameters to script based design of neural networks.

* Debugging & interaction tools • On-line graphical editing of a neural network; pausing, re-

starting and saving snap shots of neural nets during different states of their operation: display-

ing weight change, delta change, noise and a host of other features.

The different information processing paradigms are particularly well suited for the problem do-

main in which they evolved. However, when addressing classes of problems that span more

than one domain an integrated approach seems attractive. This approach involves several differ-

ent AI techniques. The inter-relationships of these techniques is still not well understood and

there is a need to study their interaction with each other. None of the systems available today

have the capability of providing a common platform to investigate these 'inter-relationships'. In

N-CLIPS we provide a common playing ground for at least two of these, with the capability of

extensions to accommodate others.

4. WHY CLIPS ?

By extending CLIPS to accommodate neural networks, semantic networks, connectionist net-

works and other knowledge representation techniques, we, will have a tool to understand their

complex inter-relationships and the mapping of one technique into another. In real life systems

we need the precision of expert systems, the localized representation of semantic networks and

the flexibility of neural networks all encompassed into one. This is so because each of these

techniques have strengths which compliment the weaknesses of the other. The brittleness of ex-

pert systems can be supplemented with the plasticity of neural networks on one hand and the

lack of precision of neural networks can be substituted by precise rules and facts. Adding new

knowledge to an expert system is quick (as a new rule) but its interaction with the existing rules

can be of a conflicting naiure. On the other hand adding a new pattern to a neural network takes

a long time but can be made to interfere minimally with the old patterns. On a factory floor,

new_ituations can be quickly learned by plugging in temporary rules. However, over a period

of time, these rules get to be unmanageable and redundant and have to be trimmed. They can be

collectively mapped into a neural network which could iron out the conflicting rules, and once

trained it can be mapped back to a more parsimonious set of rules. To illustrate this further,

assume a set of rules which do not trigger each other. The combinatorial arrangement of the

t_

N-CLIPS

Expert System

RULES FACTS

I

I Neural Network ACTIONS
OBJECTS

_,.I--.....i....
,.... t--°-_J_-_:'---t..... !1_s_'_">i I__°>

i COMr,OSmt. ICOMr'osr_ -" -" ""
SYSTEM)] i (USER • create

"Artificial]()[[DEF'INED) " Edit
Neuron , -__

• Delete [COMPOSI_ COMPOSITE

Synapse I(SYSTEM) I

I /

• Artificial
m _im m_ m ww m mR. i mm _,mil

Synapse • Layers
• Error

Criteria • BPNN

• Activation

functions :

• Output

functions

• Thresholds

• Momentum

• :Delta functions

• Learning rate

Neuron, (USER
DEFINED)

Com posue Actions

• Create
=

.... oEdit
• Delete

Groups of Neurons,
Synapse, layers,Networks

• Train

• Run . :,

• Freeze

• Show Ready

• Save, Load.

fig 1 : N-CLIPS : A hierarchical description

m

J

J

=_

w

W

D
U

m

U

J

H

!

J

m

m

w

w

_m

w

m

z

union of facts on the lhs of these rules and the actions on the rhs can be translated to the input

and the output patterns of a back propagation 'neural network (BPNN). Out of the available out-

put patterns the ones actually needed can be selected without difficulty. Then by applying the

inverse mapping technique pr0posed by Williams [11] where the input values (at the input

layer) instead of the weights are modified via back propagation of error, the neural network can

be converted back into an expert systems. Of course, a major problem to be considered in this

process is that of knowledge representation since patterns must be translated into facts. In addi-

tion there may be many-to-one mappings that are dependent upon initial states of the system.

Sometimes, at a higher level of design the localized representation of a problem can be done

through semantic networks and the rest as expert systems and neural networks, For example

the higher level path planning of mobile robots on a factory floor can be done using semantic

networks, while the low level path planning and traffic control can be done by expert systems

which in turn depend on neural networks for decision support. As can be seen all three models
will need to communicate with each other. CLIPS allows that via rules and facts, moreso be-

cause all of these techniques shall have rules and facts as their building blocks.

Another example would be the cooperative use of multiple neural networks for mortgage

underwriting and industrial parts Inspections [13][14][15]. In [13] the system is a collection of

nine coupled sub-networks have three sub-networks acting as 'experts' and their cooperative ef-

fect helps in validating the confidence level of the decisions made by the whole system.

The major functions which were added to the existing CLIPS code have been briefly ex-

plained in Appendix A. The engine for neural networks manipulates its own data structure but

eventually uses clips' agenda and fact lists to let the clips execute the neural network. The func-

tions listed in the appendix are driver, nassert, add_nfact, ncompare, ndrive, nretract. PCLIPS

[8], a distributed version of CLIPS has also been developed at the university.

S. N-CLIPS

This shell provides an object oriented approach to problem solving in the neural network and

fuzzy logic domain and at the same time maintains the integrity of the CLIPS production sys-

tem. The expert systems and sub-systems can be written as rules and facts while a neural net-

work is represented as a collection of objects and a set of actions to be performed on them. It

provides well known neural network learning paradigms as objects which the user can use to

map their problems onto or use them as subsystems of more complex user-designed neural net-

works. Users can also build their own variations of the existing paradigms and can also create

their own learning rules and models within the given environment. A library of functions for

creating and editing neural network objects like neurons, synapses, activation functions and lay-
ers is made available to the user. The ntrain and nrun functions are a collection Of rules linked

with facts which _can be invoked to train a neural network or execute it. _e rules and facts

making up the expert systems are written in the same way as in regular CLIPS. At the lowest

level of expert system-neural network communication the two systems interact via rules and

facts. However, at a higher level, complex but abstract interaction is possible. For example the

neural network actions, composite and primitive, can be written as a set of rules linked with

facts while an expert system can spawn off a neural network to extract useful information from

available fuzzy or smudged knowledge. This system can also be used as a first level tutor for

understandingbasicexistingmodels.CLIPSs'capability to interfacewith other languagesviz.
C, Ada is exploitedfor a graphical(X-Windowsand/orMotif) user-interfaceanda file-system
interfacefor savingsnapshotsandnetworksthemselves.In this systemthefollowing graphics
user-interfaceis available'

* NeuralNetwork interconnectiondiagram.
* CLIPSrulesinterconnectiondiagramfor seeingwhichrulesfire whichotherrulesandon

whatbasis.
* Mouseinterfacewith theNeuralNetworkdiagram. :
* 'Chck-on-connect_on-for-welght-changegraphicalfacility.
* Changeof color if anodefires.
* X-Windowslink editor. _ = =
* X-Windowsweighteditor.

The file system interface aliows saving and loading of neural networks via save_nn0 and

load_nn0 functions, at any instance.

6. SYSTEM DESCRIPTION

6.1 OBJECTS (Primitive)

6.1.! Artificial Neuron _ _ : _: , = _ _ _ _ =

An artificial neuron is basically of three types i.e. Input, Output and Hidden. Its major charac-

teristics (for back propagation) are an identifying number, layer number, an activation and out-

put function, threshold value and its type. These parameters could be either passed to a C func-

tion call or through a template invoked from the CLIPS interpreter. After the

parameters of a neuron are accepted from the user they are encoded as a special rule in

a string which is then compiled and loaded into the network. These parameters could be edited

and a complete neuron deleted at any given instance. Internally in CLIPS the specifications of a

neuron are _also stored within a data structure (see fig. 2). Any modification of a neuron's

specifications are automatically reflected-in the data structures and the associated rule. A de-

leted neuron will also result in deletion of all the connected links.

The composition of the special rule (for back propagation only) is as follows :

(defrule artneu#

? neu <- (neuron # layer # ready to fire)

=>

(nretract ? neu)

(propagate !aYer #) =:
(calculate_delta layer #)

(change_weights from layer # to layer #)

)

On the rhs the function propagate(), propagates the output signal to the next layer neurons after

duly multiplying it by the strength of the cQn_0ection of the links. The next function calcu-

late_delta(), calculates the deltas based on the error signal propagated by the succeeding layer

and stores them in the data structures. Finally, the change_weights0 function changes weights

based on the calculated deltas. These functions manipulate the network data structure (fig. 2)

F--
W

m
W

W

L1

J

w

rap'

W

g

D

i

i

.1

Neuron Array

Laver i

[I

net/

Link (Synapses) Lists

_" Delta function

_. Activation function

_- Output function

i, .vi

II

11
"t--'*

Neuron Array

Layer i+l

L
I

I
i

-----4_

fig. 2 : A sample Data structure for storing a Neural Network

in N-CLIPS

w

for performing the above mentioned functions. This neuron is specifically suited for represent-

ing the hidden layers of a feed forward neural network. The rules for input and output layer

neurons are slightly different. These special rules can be modified via functions provided in the

system to represent any other kifid of neural network model. A more generalized model of a

neuron is in design.

6.1.2 Artificial Synapse

These are the links between neurons, and are mainly characterized by the following parameters:

'from' and 'to' neuron # and layer #, the type (in or out link), weight. They are stored in a spe-

cial data structure (see fig. 2) and can also be stored as facts; as in the case of the outgoing links

from the output layer neurons. They can be created/edited and deleted as individual links or as

a group (from one layer to another). Individual links can be created as C functions or from

within CLIPS interpreter (a template possibly from within a windowing system) and group

links can be created through a X windows graphics li _k map editor (explained later). This way

fractional (percentage of total neurons) connectivity between layers can be represented very

easily.

6.1.3 Activation functions

A library of different existing activation functions is provided to which a user can add a func-

tion or modify or delete a function. These functions can be selectively applied to individual •

neurons or to a group of neurons.

6.1.4 Input/Output functions

Different input/output functions, for neurons in the input/output layers, which are currently

popular are provided in a library. The user can add, modify or delete a function from the library.
The user can select a function from this library to apply to a single neuron or to a group of

them. The input function is usually a linear function, nevertheless a different input function can

also be provided. Also for single layer feature maps [10] the input functions could be much

more complex. In N-CLIPS this complexity can as well be mapped directly in a neuron rule.

6.1.5 Threshold types ,_

A high pass threshold is the most general type used, where if a neuron's activation is above a
certain threshold it fires. A low pass threshold type is characterized by-itsability to allow a neu, _

ron to f'tre only if its activation is below a certain threshold. The band pass (and the multiple

band pass) threshold types [12] are applied when a neuron fires if its activation is within a sin-

gle range of values or several ranges. These are available as choices when the user is desc_bing

a neuron and can be applied to a solitary neuron or a collection of them.

6.1.6 Constants of the Equations

The constants applied in the various equations can be changed during the network training ses-

sions via the user interface provided by the system. Momentum factor, and Learning rates are

two such constants which are applicable to the back propagation neural networks. Different mo-

mentum factors and learning rates can be applied to different parts of the network.

6.1.7 Delta functions

Delta functions, as prescribed in [3], are available in this system. Users can also add customized

J

roll

IIW

Him

w

u

w

W

U

U

W

w

m
w

L_

=i

w

L

=-_=

=

W

tm::m

ltm#

delta functions to the library.

6.1.8 Error Criteria

While the mean squared error is the most generally used error function, and is the one currently

supported, future extensions will provide for other error criteria (e.g. entropy).

6.2 OBJECTS (Composite)

6.2.1 Layers :7_ i::_:.:i ___=_

This system provides both layered and non-layered neural networks. Neural layering allows for

grouping of neurons wherein information is passed between a group of (layer) and its two

'nearest neighbours (layers)'. Information flow between neurons of the same layer (horizontal

connectivity) is also permitted. The layers can be created, edited or deleted by the user through

the system provided functions. The parameters are accepted via a template provided to the

user, after which the parameters are encoded and saved in the network data structure

(fig. 2).

6.2.2 BPNN

A multi-layer feed forward neural network which follows the generalized delta learning rule is

provided with modifiable parameters. The user can specify in the BPNN template the number

neurons/layer, the number of hidden layers, the bias (threshold) values, the input/output and ac-

tivation function, layer specific learning rates and momentum factors and other parameters from

a list default and optional parameters provided by the system. The user can also update the links

between neurons by the link map editor.

6.3 ACTIONS (Primitive) :::

6.3.1 Create, Edit & Delete Neurons, Synapses

The user shall be given a library of functions for creating and modifying the above mentioned

objects. The create_neuron function can be called from within a C program or from the CLIPS

interpreter just like defrule. In CLIPS> the user can enter the parameters of a neuron from the

template provided. The template will carry default parameters and also provide help on differ-

ent options available for each parameter. The parameters have to be passed to the cre-

ate_neuron function if called within a C pr0_. The function will encode the parameters into

a special rule and _shall also update the net_vork data structure (fig. 2). The function for creating

a synapse is called create_synapse and it also is C and CLIPS callable. The synapse informa-

tion though is only stored in the network data structure. Other functions like editneuron and

edit_synapse, are basically invoked in the CLIPS interpreter. They let the user modify the

values of the neuron/synapse parameters. The deleteneuron functions simply take the neuron

and layer numbers and delete the neurons and the links from/to them. The delete_synapse re-

quires the 'from' neuron and layer numbers and the 'to' neuron and layer numbers. The net-

work data structures and clips data structures are updated accordingly.

6.4 ACTIONS (Composite)

6.4.1 Create, Edit & Delete Neurons, Synapses

When a group of neurons or s_napses have similar characteristics they can be created, edited

and deleted by a single function call. Functions to create, delete and edit a group of neurons and

layer i

1

"3
g,

3

4

5

Layer j

1 2 3 4 5 6 7 11

7

No connection i"l'] Both

Feed Forward I Feed Back

fig 3a. X W.indows Link Map Editor : Modifyin_ links, an example.

1 2 3 4 5 6 7 8 9 10 11

2

3

Layer i

4

5

6

7

8

ii • r

Layer j

Note :

The weights can

be entered from

keyboard

fig 3b. X Windows Weight Editor : ModifvinR weights, an example.

W

ffi

w

E

synapses are provided in the function library. As in the case of primitives, these functions (for

the actions) can also be accessed both, from within a C program and from the CLIPS inter-

preter. The template invoked from the interpreter, however would request additional informa-

tion from the user apropos the number of neurons, synapses or the layers under consideration,

their topological relationship etc. The group is treated as a composite object in the system

which stores it as a collection of possibly inter-connected primitive neurons and synapses.

These groups can be connected to other groups, though it is a very difficult task to determine

the actual neuron to neuron connection as it could be a one-to-one, one-to-many or a many-to-

many from one group to another. Also, the connection from one group to another can be a

higher level, logical (or abstract) connection. Besides these there can be a neighborhood effect

[10] which can be programmed into the group as a rule. The creation and editing of groups of

synapses is carried out with an X-Windows link map editor explained next (fig. 3a), The

weights of the links can be changed through a similar graphical editor.

6.4. 2 X-Windows link map editor

It is a two dimensional link map where the rows represent the 'from' neurons on a layer and the

columns represent the 'to' neurons in another (defaulted to next). It has a mouse interface to

switch between four types of connections, namely the feed-forward (black color), feed-

back(white color), none at all.(B&W pattern 1), both (B & W pattern 2). After the user has cre-

ated or modified the links between two layers and has saved them, the map will return a matrix

with the values (-1,0,1,2) for feed-back, 'none', feed-forward or 'both' connections between

neurons. The user could then either use that matrix to create his/her own link specs in a C pro-

gram or can let the library function create and modify the data structures. The map has default

link connection specifications to create the links automatically.

6.4.3 X-Windows weight editor

It is the same as the link map editor in appearance and functionality with the exception that the

user can enter the weights or modify them manually for each type of synapse at the time of

creation or at any point during training, even during the execution (fig. 3b).

6.4.4 Create, Edit & Delete Layers

These can be created via direct function calls to create layers, or can be built incremently by

first creating the other sub-components of the layers. The layers can be of basically three types

input, output and hidden, though feature maps usually have only one layer. The system provides

functions to create a standard layer or a group of them. These can be edited as individual layers

or a group of (hidden) layers. Once all the neurons on a layer are deleted, the layer automati-

cally collapses. Deleting a layer would result in all connecting synapses being purged too. If a

hidden layer is deleted resulting in partition of the network the user shall be prompted with

available options which would include destruction of the network and default connections.

6.4.5 Create, Edit & Delete Networks

A user can create, modify and even delete complete neural networks. In this system the user

will have the capability of creating his/her own networks by either modifying the system de-

fined neural networks (BPNN, currently, is the only available Neural network) or by customiz-

ing one of his/her own,

6.4.6 Ntrain

This function is a set of expert system rules (in CLIPS) which is system defined for feed for-

ward type networks. But the user can write his own training function, if desired. The system

defined training function first reads the ifiput pattern and then systematically triggers each layer.

To write ones own training function the user will have to write an expert sub system which will

then override the previously defined training function. It could be possible to have different

training functions if the network consists of different learning algorithms as sub networks.

Since there can be more than one network active at any given time, the training functions

should be classified by the network number to which they pertain,

6.4.7 Nrun

The neural networks or sub networks can be run from a CLIPS interpreter, a C program, or can

be spawned off from CLIPS rules. Since there can be more than one network active at any

given time, hence this function also needs to be passed a network identifying number.

6.4.8 Freeze= _ _ = :

This function pauses the execution of the network after which the save function can be called to

save the snap shot of the system for later analysis.

6.4.9 Show_ready

If the user wants to know, at any given instance, which set of neurons is ready to fire, he can

invoke the show_ready function. This function provides a display, either in the form of a list of

neurons or as a change of neuron color in a graphical representation of the neural network inter-
connections. The function can be invoked via a mouse.

6.4.10 Save, Load

A neural network can=be saved at =anygiven:=time in the=disk files via tile save_nn0 and

load_nn0 functions. The save function saves all the rules in appropriate files and also the data
structure associated with that network. The load function reads the same files and builds the

neural network representation within the system.

W

W _

W

L_

g

i

7. CONCLUSIONS

N-CLIPS has turned out to be a very useful tool for solving real life technical problems for

which a single know!edge=representation or A! technique does not suffice. The building-in of a
neural network simulator within CLIPS (the expert system shell) made it easy for the two to

communicate with each other, share a common fact (data) base and utilize the other's strengths

to overcome its weaknesses (e.g. expert systems brittleness versus the neural networks associa-

tive capabilities). The problem of mapping one system into another is a very difficult research

topic to be addressed in future extensions of N-CLIPS. As far as the neural network paradigms

are concerned, we plan to add all known learning paradigms _as stand alone objects. The user-

interface, can be enhanced to a complete windowing environment (e.g pop-up menus, mouse

selectable options list, graphic templates, etc). The most important enhancement to the system

would be the incorporating of semantic networks, searching algorithms, more general c0nnec-

tionist networks, frame based systems, and even petri nets.

2
i

g

g

W_

=

w

r--

w

w

u

8. REFERENCES

[1] Hoskins J. and Jones W. "Back Propagation", BYTE, Oct 87.

[2] D'Autrechy C.L., Reggia, J.A. "MIRRORS/II, Connectionist Simulation", First Annual

INNS Meeting, Boston, i988.

[3] Rumelhart et al, "Parallel Distributed Processing", vol I., i987, MIT Press,Cambridge,Mass.

[4] CLIPS User's Guide, Artficial Intelligence Section, Johnson Space Center,June 1989.

[5] McGee B., Miller M., Krolak P., and Ban" S., "Interfacing PCLIPS into the Factory of the

Future", "The First CLIPS Users Group Conference", NASA J.S.C., Houston, Texas, Aug.

1990.

[6] Rabeio L.C. and Alpteking S., "Synergy of Neural Networks and Expert Systems",

Proceedings of the Third TIMS/ORSA Conference on FMS, MIT, Cambridge, MA.,

Aug. 1989.

[7] Bhamagar H., Krolak P., and McGee B. "A Traffic Controller for Material Handling Sys-

tems", submitted to SOAR Conference, Albuquerque, New Mexico. June 26-28, 1990.

[8] Miller R., Korlak P. "PCLIPS • A Distributed Expert System". "The First CLIPS Users .

Group Conference",NASA J.S.C., Houston, Texas, Aug. 1990.

[9] Coleman J. "Evolutionary Telerobotics: An Approach to the Designing of Telerobotics Sys-

tem", #CPE-NERV-90-5, Center for Productivity Enhancement, University of Lowell,

Lowell, Ma. 01854.

[10] Kohenen T. "Self Organizing and Associative Memory. " Springer-Verlag, New York.

1989.

[11] Williams R. J. "Inverting Connectionist network mapping by back prop error." Proc. 8th

Ann. Conf. Cog. Sci. Soc. 1986.

[12] Gelband P. "Neural Selective Processing and Learning, " Proc. of the First Ann. INNS

Meeting, Boston, 1988.

[13] Collins E., Ghosh S. and Scofield C. "An application of a Multiple Neural Network Learn-

ing System to Emulation of Mortgage Underwriting Judgements, " Nestor Inc., 1 Rich-

mond Sq, Providence RI 02906.

[14] Reilly D., Scofield C., Elbaum C., and Cooper L.N. "Learning System Architectures com-

posed of Multiple Learning Modules".

[15] Reily D. et al., "An application of a Multiple Neural Network Learning System to Indus-

trial Part Inspection," ISA, 1988, Houston, Texas.

[16] Pineda F.J., "Generalization of Back-Propagation to Recurrent Neural Networks, " Physi-

cal Review Letters, Nov. 1987, pp 2229-2232.

[17] Hopfield J., and Tank D.W. "Computing with Neural Circuits," Science 233, 625-633

(1986).

8. REFERENCES Contd.

[181

[191

[20]

Kirpatrick S., Gelatt C.D.; and Vecchi M.P., "Optimization by simulated Annealing."

Science 220, 671-680 (1983).

Grossberg S., Carpenter G.A. "A Massively Parallel Architecture for a Self-Organizing

Neural Pattern Recognition Machine," Chapter 5., Neural Networks and Natural Intelli-

gence, MIT Press, Cambridghe, Massachusetts,1988.

Kosko B. "Bi-Directiona! Associative Memories, ". IEEE Trans. on systems, Man &

Cybernetics, vol 18, pp 49-60, i988.
w

L_

W

W

W

I

1IF

m

g

--- =

i '

Ii¢
© ULowell RF CPE 1990

= ,

= ,

- =

w

APPENDIX

Driver

rule name

nassert
pointer[add_nfact ncompare

/ [binds

-- ,}basis

ndrive [

ladd nactiv-
ation]

rule pointer

fig. 4 A data flOW diatrram of the changes made to CLIPS for N-CLIpS

w

Driver

This function goes through an array of neurons (a layer) and for each neuron that is ready to fire

it calls find_rule to set up a global variable pointer which points to the current neuron rule. This

is followed by a call to nassert to assert the following fact ' (neuron # layer # ready to fire).

Nassert

It calls add_nfactO with the above fact after making sure it has not been asserted already.

Add_n fact

It adds the above fact to the fact list andcails ncompare to filter through the special neuron rule.

Ncompare

It make s the vat list (binds), the joins and gets the rule pointer from the global variable and

then calls ndrive to drive the fact through the network patterns for that rule.

Ndrive

its task is to put the input parameters in proper data structures and calls add_nactivation to add

the rule to the agenda.

An important feature of the above functions has been that only one rule and one fact is in pic-

tfire. this is done since we know both the fact and the rule which its assertion will trigger. How-

ever in case of output neurons other facts are asserted which could trigger an expert system.

Nretract

It retracts the ready to fire fact from the fact list after the neuron has f'u'ed.

4 _' 1_I _u,rdl D_ PDI_ IOO_

Abstract -= : second level asks whether or not the prototype can
respond i-na-n intuitive m_n_r._The third level utilizes

CLIPS is being used as an integral module of a Rapid ProW- scenarios that in turn simulate events to which the
o'ping System. The Prototyping System consists of a display

manager for object browsing, a graph program for displaying
line and bar charts, and a communications server for routing
messages between modules. A CLIPS simulation of physical
model provides dynamic control of the user's display. Current-
ly, a project is well underway to prototype the Advanced
A utomation System (ASS) for the Federal aviation administra.
tion.

= == T

A prototype, as defined by The American Heritage

user must react. The highest level uses metrics to

modify the behavior of the running system. It is

important to note that the first three levels also have

metrics, but they are not integrated into the prototype;

they axe external: surveys, video taped sessions, sub-

jective comments of the user community.

USER DISPLAYS "
Dictionary, is an original type, form, or instance

that servesas a moffe[=on_'whlch-[a_er=s_ag_e _::-_ _..... : °

based or judged. Typically, static mock-up displays are the first proto-

LEVELS OF FUNCTIONALITY

The prototyping of user interfaces has evolved into

four distinguishable levels. The first level is the

"straw man" stage, when a basic screen design is

developed that approximates how the interface should

look. The purpose of this phase is to work out aes-

thetics issues only; it does not give any indication of

the usability of the display. Using C or another script

-like language, the second level prototypes static

responses using limited scenarios. At this phase the

objects can react to user input, but the responses do

not deviate from an internal script. The third level

incorporates a dynamic response from the system.

During this phase the dynamic system attempts to

mimic the real system as closely as possible in such

areas as responding to user events and simulating (or

generating) user scenarios. While using this level

prototyping users should not be able to tell that they

are using a prototype and not the real system. The

highest level of prototyping contains everything in the

previous three levels plus the ability to capture and

report on usage metrics.

The function of prototyping is to demonstrate

whether or not a model serves a useful purpose. At

the first level, we are trying to find out if the screens

are discernible; do they portray right meaning. The

types created for most applications. They help deter-

mine spatial and size constraints for various data mod-

els. Dynamic displays are later generated to allow

Today's prototypes not only deal with data

models, but with user models as well. For example,

icons must somehow depict a similar meaning for all

users. Supporting this trend is the rapidly increasing

role that windowing systems are playing in today's

computing environments. Specificaliy, the method in

which information is distributed into windows and

icons is important for users who are trying to under=

stand the state of an active system.

Ne w techniques__ing deve!oped daily that

strive to go beyond the borders of windows of infor-

mation into what have been termed widgets. Widgets

are typically some graphical representation, in the

form of an icon or window, that provide movements

and actuators upon some object. An example of this

type would be a sliding bar widget. I na si_lar man-

ner to the sliding bars used on stereo equipment, the

user can select the slide bar with the mouse and move

it along the axis to set or adjust some scalar value.

Widget complexity is limited only by the creator's

imagination, and they can be as simple as a small

radio knob dial or as complicated as the entire front

panel of a virtual computer. In general, prototyping

systems are becoming increasingly object oriented

with data items taking on object properties. These

u

W

IiQ

W_

U_

g

2_ -

w

7

s 2

properties can be linked to widget functionality on the

display and when an object value changes the corre-

sponding widget can be updated.

This paper will attempt to explain one particu-

lar system that wa_ _ designed to elicit user require-

ments through the use of prototyping user interactions.

The project is called User Requirements Prototyping

System (URPS). URPS is positioned at the prototyp-

ing interactions (third) level on functionality. This

does not mean that the two lower levels (static and

responsive) are excluded _ they are also available.

What we have not included as yet is a method to _

obtain metrics from the running prototype.

OBJECT RENDERING

Information can be represented (rendered) in different

manners. A temperature can be rendered as a number;,

a picture of a mercury thermometer that has more pix-

els filled as the temperature increases; or as a square

block that changes from blue to red. Any one of these

methods may be appropriate in a given situation. Any

object can be rendered in some manner, although the

method is usually based on object functionality as far

as the user interface is concerned.

WINDOWING

It is important to consider the user model as a guide to

object rendering. Current windowing systems allow

the designer to choose different techniques for win-

dow (or object) management. The three main types are

tiled, overlapping, and pop-up windows. Tiled _vin-

dows are those that split up the screen into smaller

tiles ..2. no Window _e've_r _6vefing Up a_bth_f--- and

is based upon the user's ability to deal strictly with

base spatial concepts. Overlapping windows allow for

the possibility of data being covered uparid are usual-

ly equipped with the ability to resize, move, and place

one window over another. In user models terms, over-

lapping windows represent the "desktop" paradigml

Pop-up windows are interesting in that they can rep-

resent a user model that goes beyond the "desktop"

into models that are based on a virtual technical assis-

tant working with the user's "desktop." In particular,

current pop-up windows are used for displaying a

message about the system that you must deal with

immediately (like a high priority memo on your desk-

top); displaying a menu that represents either local or

global choices about the window below it; and dis-

playing pop-up windows that act like post-up notes

from the system.

DYNAMICS

Allowing dynamic changes to happen on the display is

useful. Most user design prototypes find it necessary

to know if the user can use and interact with the data

that is presented. Current techniques make use of C

language (object-code linkability), specially designed

scripting languages, or message passing constructs to

facilitate dynamics. URPS takes a combined approach

in the form of an expert system shell call CLIPS (C

Language Integrated Production System). Event mes-

sages travel between objects via a FACT construct.

Programmability is available at both runtime via

CLIPS rules and link time via C code though CLIPS.

CURRENT SYSTEMS

There are many systems CUrrently available for proto-

typing user displays. Two will be discussed briefly.

The first is a low cost solution available

through COSMIC called TAE+ (Transportable Appli-

cations Environment Plus). TAE was developed by

NASA Goddard as a tool for building consistent,

portable user interfaces in an interactive alphanumeric

terminal environment. TAE also supports rapid proto-

typing of user interface screens and interactions, and

allows the direct reuse of those screens in the final

applications. TAE+ now supports X Window and

MOTIF widgets.

VAPS (Virtual Application Prototyping Sys-
tem) is a much more elaborate,commercially avail-
able package that runs on silicon graphic worksta-
tions. The usercanbuild prototypesby interactively
laying out the display
andthenattachingscripts
to each object. The
scripts are C functions
that are modifiable by
the user. VAPS supports
a wide range of input
devices, and a designer
can first prototype acon-
trol panel using just
graphics and a mouse.
Later, a touch sensitive
screen can be added.
VAPS, a sophisticated
product that can proto-
type very realistic
screens,is a product of
Virtual Prototypes.

DISPLAY MODELS

Rendering Models are

J
/

I

!

Object Views

I

File Viewer

(Help File)

PCLIPS Display Model

±

Monitor

I
!

Log Windows

Figure 1. PCLIPS Display Model

based on the display devices available. These devices

range from very low capability displays and very high

level displays. To examine a few of these differences,

three examples will be discussed here: the ANSI ter-

minal, the IBM PC and the X Windowing System.

Using inverted text and special symbols

whenever possible, the standard ANSI terminal can

provide many rendering possibilities, although tiled

windows seem to be the favorite on these systems. It

is, however, possible to write, or use, a package can

provide both overlapping and pop-up styles. Pictorial-

ly, widgets tend to be square and numbers are usually

depicted with numerals. Artistically speaking it is pos-

sible to have icons that are intuitive.

The next step up from the ANSI terminal the

IBM PC. The extended ANSI capabilities of the PC,

along with the speed of the system, can support inter-

esting pictorial effects. But one can always choose to

tackle the graphic modes (using or buying a package).

The biggest problem here is in choosing what level of

graphics to support. Bit image

graphics on the PC can pro-

- vide a g0od medium-for wid:

gets; however, screen manage-

"_ ment is usually still up the
pr0_ ammerl ' _

Lastly, the X Window-

Floor

Floor Plans

Charts

T I

Bar Charts

and Graphs

ing System (and other win-

dowing systems) provide win-

dow management features and

widget management as welt,

A detailed explanation of the

X Windowing System can be

found _n other places - it is

referenced here to show that

display models can vary great-

ly with device availability.

PRO TOTYPING THE ISSS m

The original work in this area . _

was done to support the rapid m

prototyping of the m_aintena_nce and control consoles

for the Federal Aviation Administration's (FAA) new

air traffic control system, the Advanced Automation

System =(AAS). The purPose .of the project is to devel-

op a rapid prototyping system for a manmachine sub- O

team to use in identifying user requirements in terms

of the graphic a! interface. This information =could the n

become the basis for a requirements document for the

user interface

---The-U-set dispiays_were separated into func <-" _ i
Ul '

tional groups where corresponding object structures

and icons were created to represent the various

objects. Functionally, the objects represented hard-

ware and software objects that were in some state of

usability. Widgets were built using the "traffic light"

concept. Green means the object is functioning fine; w

W

yellow meansthereis a de_adationof theobject;and
redmeansthatthe objectis dead. Blue is usedto rep-
resentavailablebutnonallocatedresources.

_ CLIPSis beingusedasanevent-basedsystem.
'_ CLIPSis well qualified for this role due in part to the

featuresof theproductionsystemmodel.It additionto
_ events,CLIPSfactsarebeingusedto recreatethedis-
"" play model in the form of a fact base(knowledge
_. base).These facts hold the object oriented system data

,_ about the actual objects and all the corresponding wid-

get functionality. CLIPS rules function as receptacles

for events that occur both by the simulation system

-,,_ and user's (display-based) eventsl See Figure 1.

PCLIPS is a parallel version of CLIPS that

allows multiple CLIPS experts to communicate via a

broadcasting function called remote assert (rassert).

By using this method any number of CLIPS experts

2 can be initiated. URPS presently has two: one that

serves as a simulation of the prototyped system and

another that maps simulation events to the user's

screen. A display manager cont/ols usage of the user's

screen. Widgets communicate with the display manag-

er in order to gain access to the display space and to

update the data.

EVENT-BASED FUNCTIONALITY

There are two major types of widgets: an icon class

made up of bit-image graphics and the other, an icon-

which is surrounded by a colored box; both represent

the state of the object. The box type is our GENERIC

class. For this demonstration we have only one icon

class; it is called TERMINAL.

(deffacts DisplayHanager "_ase Object Classes for Display Hanger"

; :_plate: (_ap-dm-tcon _idge_lass> <widqet-sta_e> <icon-_ilenatee>)

; teeolate: (map-_-state <widget-class> <widge_-sCate> <box-eolor.I

(map_dm_icon termina Up "ik:i_terminal_ok")

(map_dm_icon terminal down "ik:i_terminal_err")

(map_dm_icon terminal degraded "ik:i_terminal_warn")

(map_d/n_icon terminal standby "ik:i_terminal_standby")

(map dm state generic up GREEN)

(map d_ state ge_erl: down P£D)

(map _ state qenerlc spare WHITE_

(map__m state qenerlc stand.by BLUEi

(map_ct_Lstate generl: oegraoed YELLOW)

NOTE: The generic_display_update and icon_dis-

play_update use facts sent from CLIPS to the Display

Manager to control widgets, ask..for_something

receives events from the Display Manager.

(defrale ge_ric_display_ulxlate "Catch all Generic Sta:us C,hanges"

(status ?type ?object ?state)

(d_n_object ?ob3ect ?)

(map_dm state generic ?state ?signal)

_>

(rasser d_a turncolor ?object ?signal)

)

(defrule icon_dlsplay_update "Catch only TERMINAL Status Changes"

(status CC ?object ?state)

(dm_objec% ?object icon)

(map_dm_icon terminal ?state ?fname)

=>

(assert dm chg-icon ?object ?fname}

)

(Select . . .) facts are ren_tely assert_:l by the

; Display Manager when th_ user cbes something These

: are ._ch like user events.

; Currently, the default action is to open up a

; subview. If the object SELECTed does not have a

-T %%Ibview, then i_ does not have a "map din_windows"

; fact either. Another rule with a lower salience

: catches lost User Events in case _here is no sub

; view.

(clefrule ask_for something "Catch User Events"

?rl<-(select ?obj}

:(dm window ?obj ?w ?h S?Window_Stuff)

(map-dm-window ?obj ?x ?y}

_>
ORIGINAL PAGE IS

OF POOR QUALrTY

(ra_sert _ ope_-window _o_ ?x ?y ?w ?_ $?Win_ow Stuff

(retrac: ?rl)

)

DISPLAY MODEL FUNCTIONALITY

Functionally, the display is separated into views.

These views consist of collections of such widgets as

object views, monitor logs, bar charts, and pop-up

menus. Object views are windows controlled via

remote asserts (rasserts) to the Display Manager

Screen control, and pop-up windows are also con-

trolled by Display Manager requests. Log windows,

bar charts, and the floor plan are separately running

pro_ams that join the PCLIPS session upon start-up.

IMPLEMENTATION ISSUES

The Commodore Amiga was chosen as a platform for

the following reasons: Low cost, useful resolution

(640 X 400), choice of bitplanes, dynamically load-

able icons, commercially available image-based tools,

and muhiprocessing capabilities. The first challenge

was porting Clips 4.3 over to the Amiga. The next

challenge was in designing the actual display func-

tions. Following this came the PCLIPS functionality;

being able to allow multiple CLIPS experts to join

together to form a PCLIPS Environment. This was

accomplished via the recoding of a PCLIPS server

which runs in the background. The server manages

incoming requests to join a PCLIPS session and dis-

tributes remote asserts to all currently listed CLIPS

processes. Once we had tools working we were then

able to attack the problem of rapid prototyping the

ISSS. --

CONCLUSIONS

After considerable designs and redesigns, we have

found widgets, object oriented programming and

J_

W

image-based icons to be important concepts in the

development of new user interfaces. Widget technolo- ,.,,
gy is important for encapsulation of data and needs

further study. Object Oriented approaches were defi-

nitely the way to go in our prototyping system. These ,,

approaches were used to determine the level of granu-

larity for the prototype and also to specify functionali-

ty of object classes -- no one object was coded better --

or worse than another in the same class. Image-based

view facilitated the involvement of art types who felt
w

they had much more feedom with paint programs than

when they were asked to layout displays based on

geometrical (graphical) shapes.
Additionally, an interactive configuration t0oi

was created to help in the layout of widgets within

views, allowing objects to be positioned over bit-

images (pictures). - This ispart of a far more interest-
ing problem: whether to deal with image based Objects "_

or grahpical based (lines, cubes, geometry ...)

objects. One interesting group discussion led to the

idea of rendering graphical objects on top of bit image _

backdrops.

I

W

w

z c :

Im '

ORIGINAL PAGE IS

OF POOR Q_JALITY
D

I

© ULowell RF CPE 1990 w ,

